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Abstract—Amazon S3-style storage is an attractive option
for clouds that provides data access over HTTP/HTTPS. At
the same time, parallel file systems are an essential component
in privately owned clusters that enable highly scalable data-
intensive computing. In this work, we take advantage of both of
those storage options, and propose pWalrus, a storage service
layer that integrates parallel file systems effectively into cloud
storage. Essentially, it exposes the mapping between S3 objects
and backing files stored in an underlying parallel file system,
and allows users to selectively use the S3 interface and direct
access to the files. We describe the architecture of pWalrus,
and present preliminary results showing its potential to exploit
the performance and scalability of parallel file systems.

Keywords-high performance computing; parallel and dis-
tributed file systems; cloud computing;

I. INTRODUCTION

The Amazon S3 API [1] has gained popularity as the

primary interface to public cloud storage. It provides cloud

users with a convenient way of uploading and downloading

data from persistent storage over HTTP/HTTPS. With a

S3 storage service users have easy access to their data

through this ubiquitous interface regardless of their personal

computer’s location. Once in the cloud, users’ applications

use the same HTTP interface to retrieve data from S3 before

processing it. Finally, the same or other users outside the

cloud can download results, or upload new data sets to be

processed the same way. The simplicity and ubiquity of

data access is a key advantage of S3 storage, while using

other methods such as network or distributed file systems to

transfer data usually involves administrative configuration

for each end-user environment and personal computer.

Although the ubiquitous data accessibility provided by

S3 services is also beneficial in private cloud computing

environments, such as Eucalyptus [2], private cloud users are

also likely to desire full use of the performance and capacity

of purchased storage resources. In particular, parallel file

systems, such as PVFS [3], PanFS [4], GPFS [5], and

Lustre [6], play a fundamental role in cluster computing

environments as storage capable of high performance and

scalability. In order to accommodate applications with very

high parallelism and performance, it is essential to ensure

that they are able to exploit the scalability of such parallel

file systems. If an S3 service is deployed in a cloud, it

would occupy physical storage that could otherwise have

been available to a parallel file system, reducing scalability

as well as capacity. In addition, if the S3 service and parallel

file system are separate storage options, users may end

up duplicating their data in both, which leads to further

inefficiency of storage capacity.

For this reason, private cloud administration demands

good integration of the convenience and performance ef-

ficiency that S3 storage and parallel file systems provide,

respectively. Table I summarizes characteristics of these

two storage options. As the table shows, S3 storage and

parallel file systems complement each other. S3 storage

enhances the accessibility of data, making it available to

users anywhere connected to the Internet, while data in a

parallel file system is available only to users in environments

properly configured and maintained by administrators to

access it. On the other hand, parallel file systems are capable

of handling high degrees of concurrency and allow direct and

efficient reads and writes to partial files, while S3 hides it

behind an interface that allows access only at the granularity

of whole objects, even for access from the cloud computer

nodes in the same data center. For the maximum usability

of data storage in clouds, users should have the opportunity

to selectively use those two types of access methods to their

data.

In this paper, we propose pWalrus, a single storage model

for cloud computing environments that takes advantage of

the benefits of both S3-style storage and parallel file systems.

In our model, an S3 service acts as a thin layer consisting

of multiple servers, built on top of a parallel file system

available in the underlying cluster environment. Users inside

the cluster have two access paths to their data: S3 and direct

access to the parallel file system. Thus, they may choose to

use either interface for convenience or performance reasons.

For example, if private cloud computing applications are

written using the POSIX interface, they can obtain direct

parallel file system access, while users outside the cloud

still have the universal access to their data that S3 offers.

pWalrus is implemented as a modification to Walrus, the

S3-compliant storage service of Eucalyptus [2]. pWalrus

seeks to improve the original storage model of Walrus by

(1) distributing workloads to multiple servers, (2) allowing

direct file system access to data in addition to access over

HTTP/HTTPS, (3) giving users the choice to read or write



Table I: Characteristics of S3 storage and parallel file systems

Strengths Restrictions

S3 - Facilitated access through a uniform interface - PUT/GET access to objects in their entirety
- Universal accessibility regardless of user environments

Parallel File Systems - Scalable performance - Require administrative work to allow access
- POSIX interface with partial reads and writes

partial files, and (4) eliminating the process of copying

S3 objects to file systems before working on them, which

saves storage space as well as CPU time and networking

bandwidth.

The remainder of the paper is organized as follows. In

Section II, we summarize the background. We describe the

design of pWalrus in Section III and show the benefits

of providing a parallelized S3 service and allowing direct

access to a parallel file system in Section IV. Finally,

we summarize related work in Section V and conclude in

Section VI.

II. BACKGROUND

A. Amazon Simple Storage Service

Amazon Simple Storage Service (Amazon S3) [1] is an

Internet-based storage service with a simple set of function-

alities that provides virtually unlimited storage space. Users

periodically pay for the service based on the amount of data

stored, data transferred, and access requests made. The main

features of Amazon S3 are summarized below. We refer the

reader to Amazon’s online documentation of S3 for further

details.

• Users create buckets, which are containers for data, and

store in them objects, which are the base unit of user

data.

• Users upload or download entire objects in a single

operation, each up to 5 GB and with a unique key as

its identifier, from their own buckets through REST and

SOAP interfaces. The primary protocol for retrieving

objects is HTTP.

• REST requests for accessing S3 buckets or objects are

authenticated by Hash-based Message Authentication

Code (HMAC) [7]. Each user has a pair, Access Key

ID and Secret Access Key, and embeds the Access Key

ID in each S3 request, appending the hash of the request

content to it using the Secret Access Key to sign the

hash. Upon receiving a request, the S3 service retrieves

the Secret Access Key corresponding to the Access Key

ID embedded in the request, computes the content hash

using it, and compares the hash sent with the request

against the computed hash. If the hashes match, the

request is authenticated as that of the user who has

been assigned the specified Access Key ID.

• Access control is done through an access con-

trol list (ACL) associated with each bucket and
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Figure 1: Eucalyptus architecture.

object. An ACL can specify types of access

rights (READ, WRITE, READ ACP, WRITE ACP1,

FULL CONTROL) granted to individual S3 users.

• Versioning is supported and can be enabled on a per-

bucket basis. If versioning is enabled, there can be

multiple instances of the same object identifier as the

user overwrites it.

• The storage service is eventually consistent; users may

not see the newest content of an object identifier

immediately after it has been overwritten.

Using Amazon S3, user data can be stored in or nearby cloud

computing environments such as Amazon Elastic Compute

Cloud (EC2) [8].

B. Eucalyptus and Walrus

Eucalyptus [2] is an open-source infrastructure for cloud

computing. It follows the Amazon EC2 [8] model, in which

users configure virtual machines in the cloud and run tasks

on them. Figure 1 depicts the cloud model of Eucalyptus.

The cloud controller is a top-level entity in charge of

the entire cloud, managing resource allocation and user

accounts, as well as providing a web interface for cloud

management and EC2-compatible interfaces such as SOAP.

The cluster controller performs per-cluster scheduling and

networking, while the storage controller provides block store

services similar to Amazon Elastic Block Service (EBS) [9].

The node controller controls the hypervisor on each compute

node and sets up virtual machines on it.

1READ ACP and WRITE ACP are read and write permissions, respec-
tively, for the access control list itself, as opposed to the bucket or object
protected by it.
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The S3 storage service implementation for a Eucalyptus

cloud is called Walrus. It provides a bucket-based object

store and exports interfaces compatible with Amazon S3.

REST-based tools that work with Amazon S3, such as

s3curl [10], are thus compatible with Walrus and work

without modification. As of Eucalyptus 1.6.2, Walrus is a

single instance per the entire cloud. As shown in Figure

2, it shares a Java-based database holding user account

information with the cloud controller, and accesses metadata

of S3 buckets and objects similarly stored in databases. The

storage space for buckets and objects is mapped to a single,

non-shared file system directory mounted on the machine on

which Walrus runs. Both users outside the cloud and user

applications running on compute nodes in the cloud upload

and download data through the REST interface of Walrus.

III. PWALRUS DESIGN

A. Overview

pWalrus is structured as an array of S3 servers that are

backed by the same parallel file system. All servers have

the same view of S3 storage as user data. S3 system state

is also stored in the shared file system. Thus, users can

connect to any of the servers to access their data with the S3

interface, which creates the opportunity for load balancing

using, for instance, DNS round-robin to map the URL for

the S3 service to an IP address of a server. In addition,

pWalrus allows for direct access to data in the parallel file

system by exposing the mapping between S3 objects and

the corresponding files used to store these objects, which

in Walrus are managed exclusively and hidden by the S3

service.

Figure 3 illustrates the architecture of pWalrus. The solid

arrows indicate the S3 interface to the storage service, and

the dotted arrow direct access to the parallel file system. In

order to make both interfaces available to users, pWalrus

uses the following kinds of information in the parallel file

system, most of which are stored in special files called

“.walrus”:

• User account information in a pWalrus management

file.

• Proof by S3 users, in per-user special files, that they

have access to the parallel file system as a certain

cluster user.

• Metadata of S3 buckets in special files under each

user’s root S3 directory, which contains the directories

backing buckets.

• Metadata of S3 objects in special files under each

directory backing an S3 bucket.

In the pWalrus management file, pWalrus keeps informa-

tion associated with each S3 user (which is identified by a

Query ID, Eucalyptus’ equivalent of Amazon S3’s Access

Key ID), including (1) authentication information like the

Secret Key (Eucalyptus’ equivalent of Amazon S3’s Secret

Access Key), (2) an associated cluster user account that is

used to access the parallel file system and is specified by

the user upon registration, and (3) the file system directory

used to store buckets and objects for that user.

The per-user .walrus file is created by each S3 user2

allowing direct file system access, and is referred to by

pWalrus to confirm the validity of the claimed association

between the S3 user and the cluster user account. After

creating an account (Query ID) in pWalrus, each user stores

his Query ID in the .walrus file under the home directory of

his cluster user account. This .walrus file should be writable

only by the user himself, and needs to be readable only

by the user and the pWalrus service. pWalrus confirms the

cluster user account association only if the Query ID stored

in the .walrus file matches that of the S3 request passing

the HMAC signature test. In this way, pWalrus effectively

delegates the task of confirming the identity and authority

of the user to cluster administration.

Finally, pWalrus uses other .walrus files in each bucket

directory to store information about S3 objects that may not

be supported by the parallel file system as file attributes. For

example, access control lists used for S3 access and object

content hashes (md5) are likely to be stored in .walrus files

instead of in file attributes.

B. S3 Request Handling

pWalrus handles S3 requests as follows. First, upon re-

ceiving a request naming a specific Query ID, pWalrus looks

up the corresponding Secret Key and uses it to confirm the

validity of the S3 request by HMAC. Next, pWalrus retrieves

from the pWalrus management file the cluster user account

information corresponding to the Query ID embedded in the

request, checks if that account has a .walrus file under the

cluster user’s home directory, and verifies that the contents

of this .walrus file match the request’s Query ID. If it does,

the request is authorized to access the parallel file system as

the cluster user and pWalrus proceeds with the request.

2Although users in our prototype author their per-user .walrus files
themselves following a specific XML format, we recommend that .walrus
files be prepared automatically through, for example, the web interface of
Eucalyptus, to avoid formatting errors.
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If the request wants to store a new object, pWalrus creates

a new file containing the request’s data in the appropriate

bucket directory and sets its owner to the corresponding

cluster user. If the request asks to retrieve an existing object,

pWalrus checks the access control lists of the bucket and

object. If the requester has READ permission to both the

bucket and object, the contents of the object’s file are

returned. Finally, if the request wants to read S3 metadata,

such as a list of buckets owned by the user, pWalrus

serves that request based on information contained in the

appropriate .walrus files.

C. Reconciling S3 and Parallel File Systems

The storage model of pWalrus exposes to users two access

paths to data and differences in the semantics of S3-style

storage and the underlying parallel file system. As a result,

two questions arise: (1) how we reconcile access semantics

differences like atomic overwrites and concurrent seek-and-

partial-write’s, and (2) how we map file names to S3 object

names, especially if versioning is supported. This is ongoing

work3; we propose to address the former by providing a

mechanism for users to explicitly expose (publish) their

files to the S3 interface, and the latter by a file-naming

convention.

To rephrase the first question, we need to ensure that

S3 access to a certain file and direct access to that file

in the parallel file system do not conflict with each other.

Otherwise, it would be possible, for example, for pWalrus

to overwrite an existing file (when versioning is not used)

3Our prototype, measured in Section IV, expects users to cope with
semantic issues and employs a non-versioned direct mapping between file
and object names.

while the user is reading it directly through the file system.

Our approach is to let the file system user have explicit

control over what pWalrus may access. When a new file

is created in the file system, it is not seen by pWalrus

until the user executes a command to “export” it. Thus,

he is free to read or write the file without worrying about

possible access conflicts with pWalrus. Once he executes

the command, the corresponding S3 metadata, including

timestamp and content hash, is created in the appropriate

.walrus file and pWalrus is allowed to access the file. If

pWalrus reads a file whose timestamp or content hash has

changed, it marks the corresponding object as corrupted by

inappropriate external modification. If the user would like

to update the file directly at a later time, he can explicitly

“unexport” the object, removing the associated S3 metadata

so that pWalrus no longer views the object as existing. There

is less of a problem when a new file is created as a result of

an S3 object overwrite request, on the other hand, because

this always writes a new file. A newly written object’s

metadata is written by pWalrus so that the file has been

“exported” upon the completion of the request.

The second challenge is defining the mapping between

file and object names. A simple way is to use direct trans-

lation; a particular file name translates to the same object

name available through the S3 interface. This approach is

similar to FTP, which almost exposes the semantics of the

underlying file system. However, if versioning is enabled in

the S3 interface, there can be multiple files corresponding

to the same object. We suggest that this kind of file-to-

object mapping be done by a straightforward file-naming

convention, such as “objectName.pwalrus.version,” where

objectName represents the name of the object, pwalrus
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indicates that the file can be used by pWalrus, and version

is a unique number for distinguishing the file from the others

corresponding to different versions of the same object.

IV. PRELIMINARY PERFORMANCE RESULTS

We performed preliminary experiments to demonstrate the

performance benefits of the parallel S3 access provided by

pWalrus and of the direct access to the parallel file system

underlying S3 storage. The objectives of these experiments

are to confirm some of the advantages pWalrus offers: load

distribution to multiple storage servers and efficient access

to backing files rather than objects.

A. Experimental Set-up

Figure 4 shows our experimental set-up. We use PVFS

2.8.1 as the parallel file system that backs pWalrus, and

dedicate a single machine to be the PVFS metadata server.

There are N pWalrus servers running on distinct machines.

The Eucalyptus packages built from our modified source

code are installed on these server machines, and only the

functionalities relevant to pWalrus are used. Also, each

of the pWalrus server machines runs a PVFS I/O server

exporting physical storage managed by Linux native xfs

file systems. Also, on these server machines, we run PVFS

client servers using the PVFS2 Linux kernel interface to

mount PVFS as a POSIX file system. As a result, pWalrus

servers transparently access the directories mapped to PVFS.

There are N (equivalent to the number of servers) clients

that make concurrent REST S3 requests using s3curl

to the pWalrus service, each downloading a 2 GB object

containing text. The number of servers and clients, N , is

varied from 1 to 16. The load on each server is evenly

distributed, and thus the number of clients per server is

always 1.

In addition to measuring S3 access bandwidth through

pWalrus servers, we also measure the time it takes for the

Figure 5: Results of downloading data with pWalrus and

direct access to PVFS.

client machines to copy a 2 GB file each directly from

the parallel file system to their local disk. In this case, the

parallel file system client is mounted on the client machines

using the PVFS2 Linux kernel interface. The cp command is

used to copy each 2 GB file from a mounted PVFS directory

to another directory contained in a local file system. Similar

to the pWalrus measurements, the numbers of PVFS I/O

servers and clients are kept equal, and varied from 1 to 16.

Both the server and client machines are equipped with

two quad-core 2.83 or 3.0 GHz CPUs and 16 GB of memory

(except two client machines having 32 GB of memory), and

are connected through a 10 Gbps network. Each PVFS I/O

server machine uses a SATA 7200 RPM hard disk with a 1

TB capacity as the physical storage for the local file system.

All the machines run Linux kernel version 2.6.32. Before

each measurement, the page, inode, and dentry caches are

cleared on the server machines using the proc file system to

ensure that the downloaded files are read from the disks.

B. Results

The results of our experiments are summarized in Figure

5. The x-axis shows the number of pWalrus servers for S3

access and that of PVFS I/O servers for direct file system ac-

cess. The y-axis shows the throughput of downloading data

from the servers. For each of the pWalrus and PVFS cases,

the aggregate bandwidth of all servers (shown as plotted

lines) and the bandwidth per server (which is equivalent to

per disk and shown as bars) are shown. The numbers shown

are the average of three measurements, which did not vary

significantly.

The graph shows that, compared to the single pWal-

rus server case of 50 MB/s, arrays of multiple pWalrus

servers are able to deliver increased aggregate bandwidth

as a storage service, with 16 servers providing 385 MB/s.

Overall, pWalrus bandwidth is only a little lower than the



corresponding PVFS bandwidth. The results also show how

fast we can retrieve data when we bypass the S3 interface

and access PVFS directly. Starting from a single I/O server

delivering 53 MB/s, PVFS achieved a maximum of 411

MB/s with 16 I/O servers. The bandwidth per server drops

to around 25 MB/s as the number of servers increases. In

these experiments both the numbers of servers and requests

are scaled, and thus ideally the per-server bandwidth would

remain constant. The limited scalability and performance

in the graph may be caused by poor tuning of the PVFS

configuration, or because we access PVFS through the kernel

interface rather than a library binding, a choice we made for

portability reasons.4

These results illustrate that the pWalrus storage model

improves data access efficiency by two ways. First, an array

of pWalrus servers can be used to distribute data writes and

reads to different PVFS I/O servers, and has the potential to

make available the scalability of the underlying parallel file

system through the S3 interface. Second, the exposition of

the files backing S3 objects to users allow them to bypass the

S3 servers and directly benefit from the high performance

of the underlying parallel file system.

V. RELATED WORK

As cloud computing has gained increasing popularity, a

number of infrastructures for it have emerged. Examples of

such infrastructures, in addition to Amazon EC2 and Eu-

calyptus, include Tashi [11], vCloud [12], RightScale [13],

and GoGrid [14]. Some of these, such as Tashi and vCloud,

are used for hosting clouds in privately owned clusters,

while others offer physical computer resources as part of

virtualized computing environments as does Amazon EC2.

As mentioned previously, pWalrus behaves as a functionally

thin layer on top of a parallel file system, and exploits the

file system for sharing management data between its servers.

Therefore, pWalrus can be independent from other parts of

the infrastructure being used, and thus is expected to work

not only with Eucalyptus but also with other infrastructures

for private cloud computing environments.

The implementation of pWalrus transparently accesses

its physical storage through a regular mounted file system

directory. Thus, it is expected to work without extra effort

with a variety of parallel file systems that are commonly

used in cluster environments. Examples of those file systems

include PVFS [3], PanFS [4], GPFS [5], Lustre [6], HDFS

[15], PLFS [16], and pNFS [17]. Through the S3 interface,

pWalrus exposes the scalability of such file systems beyond

the boundary of the cluster to users accessing their data from

the outside.

Finally, there exist a number of tools for facilitated data

transfer over a network that are similar to pWalrus and S3.

4Also, there were a small number of Hadoop jobs running in the testbed
during our measurements, which affected the results to some extent.

GridFTP [18] is an extension to FTP capable of exploiting

higher parallelism at the TCP connection level compared

to S3. Recent proposals in the NFS v4 working group

[19] suggest support for pathless objects, which exist in a

flat name space that is different from traditional directory

hierarchies and closer to the S3 name space based on buckets

and objects. WebDAV [20] is also a web-based file store,

and has some similarities to pWalrus and S3 such as data

content identified by URI and metadata represented in XML

formats, although it has a different set of semantics from S3.

VI. CONCLUSION

In this paper, we proposed a storage model for cloud

computing environments that enables users to access their

data both through the S3 interface and through direct access

to the parallel file system backing the S3 storage. For its

simplicity and convenience, S3 storage has become a pri-

mary way of storing and accessing data in clouds. However,

rather than view it as a full-fledged storage service that hides

the physical storage system behind it and has users solely

rely on it, we use it as an additional interface that enables

users to further benefit from parallel file systems available

in their clusters. This would be of particular interest to the

administrators of private clouds, where the available storage

resources are fixed and it is important to exploit as much of

them as possible.
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